Notiz / Note

1803

Wanzlick-Carbene in der [4 + 1]-Cycloaddition mit Bis(methylthio)- und Bis(trifluormethyl)-1,2,4,5-tetrazin

Gerlinde Frenzen^a, Andreas Kümmell^b, Christiane Meyer-Dulheuer^b und Gunther Seitz*^b

Fachbereich 19 Biologie/Chemie der Universität Gesamthochschule Kassel^a, Heinrich-Plett-Straße 40, D-34109 Kassel, Germany

Pharmazeutisch-Chemisches Institut der Universität Marburg^b, Marbacher Weg 6, D-35032 Marburg/Lahn, Germany

Eingegangen am 30. März 1994

Key Words: Singlet carbenes / [4 + 1] Cycloadditions / 1,2,4,5-Tetrazines / S_EAr reactions, intramolecular

Wanzlick Carbenes in the [4 + 1] Cycloaddition Reaction with Bis(methylthio)- and Bis(trifluoromethyl)-1,2,4,5-tetrazine

The 3,6-disubstituted 1,2,4,5-tetrazines **3** and **4** have been submitted to a [4 + 1] cycloaddition reaction with the nucleophilic singlet carbenes (Wanzlick carbenes) $2\mathbf{a}-\mathbf{d}$, which are generated from the precursors $1\mathbf{a}-\mathbf{d}$. With **3** as diazadiene the expected spiro compounds $6\mathbf{a}-\mathbf{d}$ are formed. In contrast to this presumed two-step reaction sequence of **3**, with the tetrazine **4** the cascade cycloaddition/cycloelimination is surprisingly followed by an intramolecular electrophilic aromatic substitution to yield the chiral tetracyclic compounds of type **8** with high diastereoselectivity. The crystal structure of **8d** has been determined by X-ray diffraction methods.

Im Rahmen unserer Studien über [4+1]-Cycloadditionen nucleophiler Singulett-Carbene an das in Tetrazinen *s-cis*-fixierte Diazadien-System^[1-4] haben wir auch Wanzlick-Carbene vom Typ $2^{[5,6]}$ in unsere Untersuchungen einbezogen und berichten hier über Reaktionen von 2 mit den Tetrazinen 3 (R = SCH₃) und 4 (R = CF₃).

Als Carben-Quelle setzten wir an den Stickstoff-Atomen unterschiedlich substituierte (Trichlormethyl)imidazolidine $1a-d^{[5,6]}$ ein, die wegen ihrer geringen Hydrolyse- und Oxidations-Empfindlichkeit gut handhabbar sind und beim Erhitzen unter Eliminierung von Chloroform glatt die zweifach N-substituierten Carbene 2 freisetzen. Denkbar ist, daß mit dem Tetrazin 3 als Reaktionspartner die reaktiven Zwischenstufen 2 ohne vorherige Dimerisierung^[7] quantitativ abgefangen werden, wahrscheinlich unter Bildung der nicht isolierbaren Spiro-artigen Tetraazanorbornadiene 5. Eine Entscheidung zwischen konzertiertem und zweistufigem Mechanismus mit dipolarer Zwischenstufe ist bisher nicht möglich. Unter den relativ drastischen Reaktionsbedingungen (siedendes Xylol) sind die Zwischenstufen 5 instabil. Unter N₂-Eliminierung entstehen daraus die intensiv gelben Tetraazaspiro[4.4]nona-1,3-diene 6a-d mit brauchbaren Ausbeuten (35-65%). Setzt man anstelle von 3 das Trifluormethyl-substituierte Tetrazin 4 als Carben-Fänger ein, so isoliert man z. B. mit 1 a als Reaktionspartner nach säulenchromatographischer Aufarbeitung ein farbloses Produkt. Elementaranalytische und massenspektrometrische Daten sind zwar mit Verbindungen des Typs 7 im Einklang, IR-Daten mit einer intensiven NH-Absorption im Bereich von $\tilde{v} = 3320 \text{ cm}^{-1}$ und die Nichtäquivalenz der Methylenprotonen am Imidazol-Ring im ¹H-NMR-Spektrum lassen schließen, daß 7a eine unerwartete, interessante Folgereaktion eingegangen ist. Offensichtlich kann das stark elektrophile C-3 des Azin-Rings den in günstiger Nähe befindlichen elektronenreichen Aryl-Ring im Sinne einer elektrophilen Substitution am Aromaten angreifen. Dabei entstehen ungewöhnliche tetracyclische Systeme, die durch eine NH-Funktion und zwei Chiralitätszentren an C-3a und C-8b charakterisiert sind. Von den zwei denkbaren diastereomeren Racemformen 8 oder 9 entsteht nur *eine* mit hoher Diastereoselektivität mit ca. 50% Ausbeute.

Studien an Molekülmodellen verdeutlichen, daß das an den Pyrazol-Ring anellierte Indol-System entweder *cis*- wie bei 8 oder wie bei 9 *trans*-verknüpft sein kann. Bekanntlich ist bei anellierten Fünfring-Bicyclen die *cis*-Anordnung wegen der vergleichsweise geringeren Spannungsenergie energetisch begünstigt^[8]. Deswegen haben wir für das isolierte Produkt die Racemform mit *cis*-Konfiguration wie in 8a favorisiert (im Formelbild ist jeweils nur *ein* Enantiomeres wiedergegeben). Mit spektroskopischen Methoden ließen sich Konstitution und Konfiguration von 8a und der analog durch intramolekularen Ringschluß erhaltenen Verbindungen 8b und d nicht zweifelsfrei klären. Eine mit einem aus Acetonitril gewonnenem Einkristall von 8d durchgeführte Röntgenstrukturanalyse bestätigt die erwartete Konstitution 8d mit *cis*-Konfiguration (Abb. 1).

Dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft danken wir für finanzielle Unterstützung, der Hoechst AG, der Degussa AG, der Solvay, Fluor und Derivate GmbH und der Bayer AG für Chemikalienspenden.

Experimenteller Teil

Allgemeine Angaben siehe Lit.^[12]. Die Zuordnungen der ¹³C-NMR-Daten sind nicht gesichert.

Allgemeine Vorschrift zur Umsetzung des 3,6-disubstituierten Tetrazins 3 mit den (Trichlormethyl)imidazolidinen 1a-d: Eine Lö-

Chem. Ber. 1994, 127, 1803–1806 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009–2940/94/0909–1803 \$ 10.00+.25/0

1804

sung von z.B. 3 mmol 3 in 10 ml Xylol wird unter Ar auf 90°C erhitzt, mit 4.5 mmol 1 versetzt und dann so lange unter Rückfluß erhitzt, bis die rote Farbe des Tetrazins nicht mehr sichtbar ist. Nach Entfernen des Lösungsmittels i.Vak. wird der Rückstand an Kieselgel chromatographiert (Säule 50×3 cm). Mit Dichlormethan als Fließmittel eluiert man Lösungsmittelreste, evtl. nicht umgesetztes Tetrazin und Thermolyseprodukte von 1. Die Elution der Spiro-Verbindungen 5 erfolgt mit *n*-Hexan/Ethylacetat (1:1).

6,9-Bis(methylthio)-1,4-diphenyl-1,4,7,8-tetraazaspiro[4.4]nona-6,8-dien (**6a**): Aus 257 mg (0.5 mmol) **1a** und 87 mg (0.5 mmol) **3** erhält man 96 mg (52%) gelbe Kristalle vom Schmp. 201°C. – IR (KBr): $\tilde{v} = 3045$ cm⁻¹, 1590, 1495, 755. – UV (CH₂Cl₂): λ_{max} (lg ε) = 251 nm (4.523), 302 (Sch, 3.831), 324 (3.962). – ¹H-NMR

Abb. 1. ORTEX-Zeichnung^[9–11] eines Moleküls **8d** im Kristall (die thermischen Ellipsoide geben 50% Aufenthaltswahrscheinlichkeit wieder; ausgewählte Bindungslängen [Å] und -winkel [°]: N(1)–C(7) 1.473(5), C(7)–C(8) 1.488(6), N(2)–C(8) 1.465(5), N(2)–C(19) 1.471(4), N(2)–C(9) 1.405(5), C(9)–C(14) 1.384(5), C(14)–C(15) 1.517(5), C(15)–C(19) 1.588(5), N(3)–C(15) 1.464(4), N(3)–N(4) 1.381(5), N(4)–C(17) 1.277(4), C(17)–C(19) 1.518(5), N(1)–C(19) 1.454(5); C(17)–C(19)–C(15) 97.3(3), N(2)–C(19)–C(17) 111.2(3), N(1)–C(19)–N(2) 104.5(3), N(2)–C(19)–C(15) 107.3(3), N(1)–C(19)–C(17) 117.0(3), C(14)–C(15)–C(19) 100.3(3), N(3)–C(15)–C(19) 103.0(3), N(3)–C(15)–C(16) 110.6(3), N(3)–C(15)–C(14) 115.3(3)

(CDCl₃): $\delta = 7.25 - 7.20$ (m, 4H, Aryl-H), 6.92-6.89 (m, 2H, Aryl-H), 6.76-6.74 (m, 4H, Aryl-H), 3.75 (s, 4H, NCH₂), 2.42 (s, 6H, SCH₃). - ¹³C-NMR (CDCl₃): $\delta = 177.9$ (s, C-6/9), 143.4 (s, C-1'), 129.2 (d, ¹J_{C,H} = 159 Hz, C-3'/5'), 120.8 (d, ¹J_{C,H} = 161 Hz, C-4'), 115.5 (d, ¹J_{C,H} = 157 Hz, C-2'/6'), 96.7 (s, C-5), 46.1 (t, ¹J_{C,H} = 143 Hz, C-2/3), 13.4 (q, ¹J_{C,H} = 142 Hz, SCH₃). - MS, *m*/z (%): 368 (1) [M⁺], 248 (100). - C₁₉H₂₀N₄S₂ (368.5): ber. C 61.93, H 5.47, N 15.20, S 17.40; gef. C 61.85, H 5.39, N 15.14, S 17.32.

6,9-Bis(methylthio)-1,4-di-p-tolyl-1,4,7,8-tetraazaspiro[4.4]nona-6,8-dien (**6b**): Aus 0.510 g (2.93 mmol) **3** und 1.625 g (4.40 mmol) **1b** erhält man nach 1stdg. Erhitzen auf 140°C 403 mg (35%) gelbe Kristalle vom Schmp. 205°C [*n*-Hexan/Ethylacetat (1:1)]. – IR (KBr): $\tilde{v} = 2998 \text{ cm}^{-1}$, 1611, 1575, 1503, 1290, 762. – UV (CHCl₃): λ_{max} (lg ε) = 251 nm (4.410), 325 (3.886). – ¹H-NMR (CDCl₃): $\delta = 7.03$ (d, ³J_{H,H} = 8 Hz, 4H, Aryl-H), 6.66 (d, ³J_{H,H} = 8 Hz, 4H, Aryl-H), 6.66 (d, ³J_{H,H} = 8 Hz, 4H, Aryl-H), 3.73 (s, 4H, NCH₂), 2.43 (s, 6H, SCH₃), 2.25 (s, 6H, CH₃). – ¹³C-NMR (CDCl₃): $\delta = 178.8$ (N=C), 141.6 (C-1'), 130.9 (C-4'), 130.4 (C-3'/5'), 116.3 (C-2'/6'), 97.6 (C-5), 46.9 (C-2/3), 21.2 (CH₃), 14.2 (SCH₃). – MS, *m*/z (%): 396 (0.3) [M⁺], 276 (100). – C₂₁H₂₄N₄S₂ (396.6): ber. C 63.60, H 6.10, N 14.13, S 16.17; gef. C 63.29, H 6.08, N 14.11, S 16.11.

1,4-Bis(4-methoxyphenyl)-6,9-bis(methylthio)-1,4,7,8-tetraazaspiro[4.4]nona-6,8-dien (6c): Aus 0.760 g (4.37 mmol) 3 und 2.633 g (6.56 mmol) 1c erhält man nach 1.5stdg. Erhitzen auf 150°C 1.183 g (63%) gelbe Kristalle vom Schmp. 173°C [*n*-Hexan/Ethylacetat (1:1)]. – IR (KBr): $\tilde{v} = 2986 \text{ cm}^{-1}$, 1608, 1509, 1242, 756. – UV (CHCl₃): λ_{max} (lg ε) = 247 nm (4.410), 313 (3.991). – ¹H-NMR (CDCl₃): $\delta = 6.79$ (d, ³J_{H,H} = 9.1 Hz, 4H, Aryl-H), 6.74 (d, ³J_{H,H} = 9.1 Hz, 4H, Aryl-H), 3.74 (s, 6H, OCH₃), 3.70 (s, 4H, NCH₂), 2.43 (s, 6H, SCH₃). – ¹³C-NMR (CDCl₃): $\delta = 178.63$ (N=C), 154.57 (C-4'), 137.29 (C-1'), 117.77 (C-3'/5'), 114.67 (C-2'/6'), 97.90 (C-5), 55.69 (OCH₃), 46.93 (C-7/8), 13.71 (SCH₃). – MS, *m*/z (%): 428 (1.5) [M⁺], 308 (100). – C₂₁H₂₄N₄O₂S₂ (428.6):

Chem. Ber. 1994, 127, 1803-1806

ber. C 58.85, H 5.64, N 13.07, S 14.96; gef. C 58.77, H 5.56, N 13.24, S 14.88.

1.4-Bis(4-chlorphenyl)-6,9-bis(methylthio)-1,4,7,8-tetraazaspiro-[4.4]nona-6,8-dien (6d): Aus 0.543 g (3.12 mmol) 3 und 1.92 g (4.68 mmol) 1d erhält man nach 2stdg. Erhitzen unter Rückfluß 885 mg (65%) gelbe Kristalle vom Schmp. 210°C [n-Hexan/Ethylacetat (1:1)]. – IR (KBr): $\tilde{v} = 2920 \text{ cm}^{-1}$, 1590, 1497, 1290, 810. – UV (CHCl₃): λ_{max} (lg ϵ) = 257 nm (4.561), 327 (3.890). - ¹H-NMR (CDCl₃): $\delta = 7.18$ (d, ${}^{3}J_{H,H} = 9$ Hz, 4H, Aryl-H), 6.66 (d, ${}^{3}J_{H,H} =$ 9 Hz, 4H, Aryl-H), 3.73 (s, 4H, NCH₂), 2.45 (s, 6H, SCH₃). -¹³C-NMR (CDCl₃): $\delta = 177.4$ (N=C), 141.7 (C-1'), 129.1 (C-3'/ 5'), 126.1 (C-4'), 116.7 (C-2'/6'), 96.5 (C-5), 46.2 (C-2/3), 13.4 (SCH_3) . – MS, m/z (%): 436 (0.3) [M⁺], 316 (100). C19H18Cl2N4S2 (437.4): ber. C 52.17, H 4.18, N 12.8, S 14.66; gef. C 51.85, H 4.12, N 12.64, S 14.79.

1,4,5,6,7,11b-Hexahydro-4-phenyl-3,11b-bis(trifluormethyl)imidazo[1,2-a]pyrazolo[4,3-b]indol (8a): Eine Lösung von 440 mg (2.0 mmol) 4 und 690 mg (2.0 mmol) 1a in 10 ml getrocknetem Xylol erhitzt man unter Ar zum Sieden, bis die rote Tetrazin-Farbe verblaßt ist (ca. 1 h). Nach Abkühlen auf Raumtemp. wird filtriert, der abgetrennte Feststoff verworfen, das Filtrat i.Vak. im Rotationsverdampfer eingeengt und der ölige Rückstand säulenchromatographisch an Kieselgel (Säule 30×3 cm) gereinigt. Mit *n*-Hexan/ Dichlormethan (1:1) eluiert man wenig Xylen und nicht umgesetztes 1. Mit Dichlormethan als Eluens erhält man einen farblosen Feststoff, der aus n-Hexan umkristallisiert wird; Ausb. 420 mg (51%) farblose Kristalle vom Schmp. $161-162^{\circ}$ C. – IR (KBr): $\tilde{v} =$ 3320 cm^{-1} , 3080, 2980, 1605, 1355, 1340, 1315, 1205, 1190, 1160, 1130, 765, 760. – UV (CH₂Cl₂): λ_{max} (lg ε) = 241 nm (4.471), 278 (3.570). - ¹H-NMR (400 MHz, [D₆]DMSO): $\delta = 10.34$ (br. s, 1 H, NH), 7.53 (d, ${}^{3}J_{H,H} =$ 7.6 Hz, 1H, Aryl-H), 7.46 (m_c, 1H, Aryl-H), 7.27-7.18 (m, 4H, Aryl-H), 6.87 (m_c, 1H, Aryl-H), 6.69 (d, ${}^{3}J_{H,H} = 8.2$ Hz, 2H, Aryl-H), 3.99 (m_c, 2H, Methylen-H), 3.72 (m_c, 1 H, Methylen-H), 3.14 (m_c, 1 H, Methylen-H). - ¹³C-NMR (CDCl₃): $\delta = 150.8$ (s, C-7a), 144.1 (dq, ${}^{2}J_{C,F} = 35$, ${}^{3}J_{C,H} = 7$ Hz, C-3), 143.4 (t, ${}^{3}J_{C,H} = 9$ Hz, C-1'), 132.0 (d, ${}^{1}J_{C,H} = 160$ Hz, Aryl-CH), 128.8 (dd, ${}^{1}J_{C,H} = 158$, ${}^{3}J_{C,H} = 8$ Hz, C-3'/5), 128.4 (s, C-11a), 124.8 (d, ${}^{1}J_{C,H} = 162$ Hz, Aryl-CH), 124.7 (d, ${}^{1}J_{C,H} = 162$ Hz, Aryl-CH), 123.4 (q, ${}^{1}J_{C,F} = 280$ Hz, CF₃), 120.1 (dt, ${}^{1}J_{C,H} =$ 161, ${}^{3}J_{C,H} = 7$ Hz, C-4'), 119.5 (q, ${}^{1}J_{C,F} = 273$ Hz, CF₃), 116.5 (d, ${}^{1}J_{C,H} = 163$ Hz, Aryl-H), 114.8 (dt, ${}^{1}J_{C,H} = 158$, ${}^{3}J_{C,H} = 5$ Hz, C-2'/6'), 101.5 (s, C-3a), 78.0 (q, ${}^{2}J_{C,F} = 31$ Hz, C-11b), 51.2 (t, ${}^{1}J_{C,H} = 143$ Hz, NCH₃), 50.4 (dd, ${}^{1}J_{C,H} = 139$, ${}^{1}J_{C,H} = 147$ Hz, NCH₂). - MS, m/z (%): 412 (15) [M⁺], 343 (55), 317 (100). - $C_{19}H_{14}F_6N_4$ (412.3): ber. C 55.35, H 3.43, N 13.59; gef. C 55.26, H 3.41, N 13.51.

1,4,5,6,7,11b-Hexahydro-10-methyl-4-p-tolyl-3,11b-bis(trifluormethyl)imidazo[1,2-a]pyrazolo[4,3-b]indol (8b): Vorschrift analog der für 8a. Aus 1.18 g (5.4 mmol) 4 und 3.00 g (8.1 mmol) 1b erhält man 222 mg (9%) farblose Kristalle vom Schmp. 147°C (n-Hexan). - IR (KBr): \tilde{v} = 3337 cm⁻¹ (NH). - UV (CHCl₃): λ_{max} (lg ε) = 243 nm (4.461). $- {}^{1}$ H-NMR (CDCl₃): $\delta = 7.21$ (m, 1H, Aryl-H), 7.15 (br. s, 1H, NH), 7.06 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H, Aryl-H), 6.96 (d, ${}^{3}J_{H,H} = 8$ Hz, 1H, Aryl-H), 6.82 (br. s, 1H, Aryl-H), 6.63 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H, Aryl-H), 3.89-3.91 (m, 3H, Methylen-H), 3.27 - 3.21 (m, 1 H, Methylen-H). $- {}^{13}$ C-NMR (CDCl₃): $\delta = 148.6$ (C-7a), 144.5 (q, ${}^{2}J_{CF}$ = 36 Hz, C-3), 141.2 (C-1'), 134.7 (Aryl-C), 132.8 (Aryl-CH), 129.4 (Aryl-CH), 129.3 (Aryl-C), 128.5 (Aryl-C), 124.9 (Aryl-C), 123.5 (q, ${}^{1}J_{C,F} = 280$ Hz, CF₃), 119.5 (q, ${}^{1}J_{C,F} =$ 273 Hz), 116.4 (Aryl-CH), 114.7 (Aryl-CH), 101.9 (C-3a), 78.0 (q, ${}^{2}J_{C,F} = 30$ Hz, C-11b), 51.3 (NCH₂), 50.8 (NCH₂), 21.1 (CH₃), 20.4 (CH₃). - MS, m/z (%): 440 (13) [M⁺], 371 (100), 302 (16). -

Chem. Ber. 1994, 127, 1803-1806

C₂₁H₁₈F₆N₄ (440.4): ber. C 57.27, H 4.12, N 12.72; gef. C 57.07, H 4.09, N 12.41.

10-Chlor-4-(4-chlorphenyl)-1,4,5,6,7,11b-hexahydro-3,11b-bis-(trifluormethyl)imidazo/1,2-a/pyrazolo/4,3-b/indol (8d): Vorschrift analog der für 8a. Aus 1.062 g (4.9 mmol) 4 und 3.00 g (8.3 mmol) 1d erhält man 440 mg (19%) farblose Kristalle vom Schmp. 163°C. - IR (KBr): $\tilde{v} = 3280 \text{ cm}^{-1}$ (NH). - UV (CHCl₃): λ_{max} (lg ε) = 247 nm (4.518). - ¹H-NMR (CDCl₃): $\delta = 7.39$ (dd, ³J_{H,H} = 8, ${}^{4}J_{H,H} = 2$ Hz, 1H, Aryl-H), 7.34 (br. s, 1H, NH), 7.25–7.21 (m, 2H, Aryl-H), 7.00 (d, ${}^{3}J_{H,H} = 8$ Hz, 1H, Aryl-H), 6.93 (s, 1H, Aryl-H), 6.63 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H, Aryl-H), 3.91–3.89 (m, 2H, NCH₂), 3.84 (m, 1 H, Methylen-H), 3.30 (m, 1 H, Methylen-H). -¹³C-NMR (CDCl₃): δ = 149.4 Hz, C-7a), 143.9 (q, ²*J*_{C,F} = 34 Hz, C-3), 142.0 (C-1'), 132.7 (Aryl-CH), 130.1 (Aryl-C), 129.1 (2 Aryl-CH), 125.2 (Aryl-C), 124.7 (Aryl-CH), 123.4 (q, ${}^{1}J_{C,F} = 280$ Hz, CF₃), 119.4 (q, ${}^{1}J_{C,F} = 273$ Hz, CF₃), 117.8 (Aryl-CH), 116.2 (2 Aryl-CH), 102.0 (C-3a), 78.4 (q, ${}^{2}J_{C,F} = 31$ Hz, C-11b), 51.6 (NCH₂), 50.6 (NCH₂); statt 17 zu erwartenden Signalen werden im ¹³C-NMR-Spektrum nur 16 Signale registriert, weil zwei Aryl-C-Atome gleiche chemische Verschiebung aufweisen. – MS, m/z (%): 480 (11) $[M^+]$, 411 (100). $-C_{19}H_{12}Cl_2F_6N_{14}$ (481.23): ber. C 47.42, H 2.51, N 11.64; gef. C 47.31, H 2.78, N 11.94.

Röntgenstrukturanalyse von 8d^[9]: Zur Gewinnung von Einkristallen von 8d wurde aus Acetonitril umkristallisiert. Ein farbloser Einkristall (ca. $0.2 \times 0.2 \times 0.02$ mm) wurde auf einem Vierkreisdiffraktometer (Enraf Nonius CAD4) mit Mo-Ka-Strahlung (Graphit-Monochromator) bei 25°C im ω-Scan-Modus vermessen. Die Gitterkonstanten der monoklinen Elementarzelle mit der Raumgruppe $P2_1/n$ (Z = 4; $d_{her} = 1.50 \text{ mg/m}^3$) wurden mit den Beugungswinkeln von 25 starken Reflexen zu folgenden Werten verfeinert: a =850.0(2), b = 1903.0(3), c = 1465.1(2) pm; $\beta = 103.35(1)^{\circ}$. Von 4808 im 2 Θ -Bereich von 4-52° (-10 < h < 0, 0 < k < 23, -17 < l < 17) gemessenen Reflexen wurden 3202 unabhängige mit F $> \sigma(F)$ zur Verfeinerung verwendet. Der Absorptionskoeffizient μ beträgt 0.35 mm⁻¹; eine Korrektur wurde nicht durchgeführt. Die Struktur wurde mit Direkten Methoden^[10] gelöst, die Verfeinerung^[11] erfolgte mit voller Matrix, basierend auf F²-Werten mit anisotropen Temperaturfaktoren für alle schweren Atome. Die H-Atome wurden mit isotropen, festen Temperaturfaktoren auf berechneten Positionen auf den C-Atomen "reitend" mitgeführt. Lediglich das H-Atom an N3 wurde frei verfeinert. Die abschließenden Zuverlässigkeitswerte bei einem Daten/Parameter-Verhältnis von 10/1 für alle Reflexe mit $I > 2\sigma(I)$ betrugen: $R_1 = 0.054$; wR =0.048 { $w = 1/[s^2 \cdot F_0^2 + (0.0733 P)^2]$ mit $P = (F_0^2 + 2F_c^2)/3$ }. Die maximale Parameterverschiebung lag im letzten Verfeinerungszyklus beim 0.001 fachen der Standardabweichung, die max. Restelektronendichte bei 0.29 e/Å³.

- ^[1] A. Kümmell, G. Seitz, Tetrahedron Lett. 1991, 32, 2743-2746.
- [2] Gerninghaus, A. Kümmell, G. Seitz, Chem. Ber. 1993, 126,
- 733 738[3] P. Imming, A. Kümmell, G. Seitz, *Heterocycles* 1993, 35, 299-304, und dort zitierte Literatur; P. Imming, R. Mohr, E. Müller, W. Overheu, G. Seitz, *Angew. Chem.* 1982, 94, 291; *Angew. Chem. Int. Ed. Engl.* 1982, 21, 284.
 [4] U. Mähele, U. Durustatic, *Chem.* 202, 1987, 111, 9

- [4] H. Möhrle, H. Dwuletzki, Chem. -Ztg. 1987, 111, 9.
 [5] H. W. Wanzlick, E. Schikora, Angew. Chem. 1960, 72, 494.
 [6] H. W. Wanzlick, E. Schikora, Chem. Ber. 1961, 94, 2389-2393.
 [7] Mit den Director and Chem. Ber. 1961, 94, 2389-2393.
- [7] Mit den Dimeren von 2 sind dieselben Reaktionsprodukte 6, 7 bzw. 8 zu erwarten. Zum Reaktionsmechanismus siehe H. Heydt, M. Regitz in Meth. Org. Chem. (Houben-Weyl) 4th Ed., 1989, Bd. E 19 b, Teil 2, S. 1803.
- [8] W. L. F. Armarego in Stereochemistry of Heterocyclic Com-pounds (Eds.: E. C. Taylor, A. Weissberger), Teil II, John Wiley, New York, 1977, S. 60-61.

1805

- K. B. Wiberg, Angew. Chem. 1986, 98, 312–322; Angew. Chem. Int. Ed. Engl. 1986, 25, 312–322.
- ^[10] Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-400919, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ^[11] Zur Strukturlösung wurde das Programm *SHELXS-86* verwendet (G. M. Sheldrick, Göttingen, **1990**).
- [12] Zur Verfeinerung, Geometrieberechnung und Anfertigung von Tabellen wurde das Programm SHELXL-93 (G. M. Sheldrick, Göttingen, 1993) verwendet, die Zeichnungen wurden mit Hilfe der Programme SCHAKAL 92 (E. Keller, Freiburg, 1992) und ORTEX (P. McArdle, Galway, 1994) angefertigt. Zur Berechnung der besten Ebenen wurde das Programm PLATON 93 (A. L. Spek, Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, A46, C34) benutzt.
- ^[13] G. Frenzen, M. Rischke, G. Seitz, *Chem. Ber.* **1993**, *126*, 2317-2323.

[131/94]